RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2014 FIRST YEAR

Date : 23/05/2014 COMPUTER SCIENCE(Honours)

1. Answer **any one** from the following:

Time: 11 am – 2 pm Paper: II Full Marks: 75

[Use a Separate Answer Book for each group]

Group - A

a) Suppose a[n][m] be a two-dimensional array having n number of rows and m number of columns.

 $[1 \times 5]$

		Establish an address calculation formulae to compute the location of a[i][j] using column-major order.	[5]
	b)	A letter means Push and an asterisk means pop in the following sequence of operations over a stack. Give the sequence of values returned by the pop operations when this sequence of operations is performed on an initially empty stack. $E A S * Y * Q U E * * * S T * * * I O * N * * *$	
		Show the stack after each push and pop operations.	[5]
Ar	iswe	er <u>any three</u> from the following:	
2.	,	Briefly, differentiate between ADT and Data-structure. Develop an ADT for FRACTION.	[3] [7]
3.	b)	Write an algorithm to convert and infix expression to postfix expression. Convert the following expression from infix to pre-fix form. A $/$ B^C + D * E - A * C	[6] [2]
	,	What do you mean by symmetric condition in case of double linked list.	[2]
4.		Write an algorithm to perform binary search (in recursive way) over a list of sequential elements, write down best case, average case and worst case time complexity of binary search? [3 Explain how insertion and deletion operations can be performed in O(1) time on circular linked list.	+2] [5]
5.	,	Critically comment: "Number of inversions measure the unsortedness". Give an array which has just been partitioned by the first step of quick sort: 3, 0, 2, 4, 5, 8, 7, 6, 9 which of these elements could be the Pivot? Give reasons for your claim.	[2]
_		·	[8]
6.	a)	ABC + *CBA - +* is a post fix expression with the assumption $A = 1$, $B = 2$ and $C = 3$. Compute the final value obtained if the expression is evaluated.	[2]
	b)	Give the linked representation for the following sparse matrix : $ \begin{pmatrix} 0 & 0 & 11 & 0 & 13 \\ 12 & 0 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 & -8 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} $	[5]
	c)	With an example, show how does interpolation search find an element using minimum number of comparisons.	[3]
		$\underline{\mathbf{Group}} - \underline{\mathbf{B}}$	
An		er <u>any four</u> from the following:	
7.	,	If $f(x) = 4\cos x - 6x$, find the relative percentage error in $f(x)$, for $x = 0$, if the error in $x = 0.005$. Prove that the sum of Lagrangian functions or co-efficients is unity. Find the value of $f(x)$ at $x = 0$, using appropriate interpolation formula from given following table $x : -1 -2 2 4$ f(x) : -1 -9 11 69	[3] [3] [4]
		111	

- 8. a) Prove that $\Delta \cdot \nabla = \Delta \nabla$ where, Δ and ∇ holds their usual meaning. [2]
 - b) Explain the geometrical meaning of Simpson's one-third rule. [3]
 - c) Evaluate $\int_{3}^{7} x^{2} \log x \, dx$ by using trapezoidal rule taking n = 4, correct upto five decimal places. [5]
- 9. a) Write down the algorithm of Secant Method.

- [3]
- b) What is the procedural difference between Regula-Falsi and Secant Method?
- [2]
- c) Find a real root of the equation $f(x) = x^3 2x 5 = 0$ using regular falsi method. Correct upto three decimal places. [5]
- 10. a) Compute the values of the unknown in the following system of equations by Gauss-Seidel iterative method. [5]

$$4x - y + z = 7$$

$$4x - 8y + z = -21$$

$$-2x + y + 5z = 15$$

b) Compute y(0·2), from the equation $\frac{dy}{dx} = x - y$, given y(0) = 1, taking h = 0·1, by fourth order

Range-Kutta Method, correct to five decimal place.

[5]

[2]

[2]

[3]

- 11. a) Define the following terms:
 - (i) Basis (ii) feasible solution
 - b) Check whether the vectors (2, 4, 10) and (3, 6, 15) are linearly dependent or not.
 - c) The owner of a small machine shop has four machinists available to assign to jobs for the day. Five jobs are offered with expected profit for each machinist on each job as follows:

	A	В	С	D	Е
1	62	78	50	101	82
2	71	84	61	73	59
3	87	92	111	71	81
4	48	64	87	77	80

Find the assignment of machinists to jobs that will result in a maximum profit. (State each step) [6]

12. a) Find the dual of the following linear programming problem:

Maximize
$$z = 2x_1 + 3x_2 + 4x_3$$

Subject to $x_1 - 5x_2 + 3x_3 = 7$, $2x_1 - 5x_2 \le 3$, $3x_2 - x_3 \ge 5$, $x_1, x_2 \ge 0$

and x_3 is unrestricted in sign.

b) A steel company has three open hearth furnaces and five rolling mills. Transportation cost (rupees per quintal) for shipping steel from furnaces to rolling mills are shown in the following table: [7]

	M_1	M_2	M_3	M_4	M_5	
F_1	4	2	3	2	6	8
F_2	5	4	5	2	1	12
F ₂ F ₃	6	5	4	7	7	14
	1	1	6	Q	Q.	

Find the initial basic feasible solution using Vogel's Approximation Method.

Find also the optimal shipping schedule.

SO 樂 CR